8 research outputs found

    V2HDM-Mono: A Framework of Building a Marking-Level HD Map with One or More Monocular Cameras

    Full text link
    Marking-level high-definition maps (HD maps) are of great significance for autonomous vehicles, especially in large-scale, appearance-changing scenarios where autonomous vehicles rely on markings for localization and lanes for safe driving. In this paper, we propose a highly feasible framework for automatically building a marking-level HD map using a simple sensor setup (one or more monocular cameras). We optimize the position of the marking corners to fit the result of marking segmentation and simultaneously optimize the inverse perspective mapping (IPM) matrix of the corresponding camera to obtain an accurate transformation from the front view image to the bird's-eye view (BEV). In the quantitative evaluation, the built HD map almost attains centimeter-level accuracy. The accuracy of the optimized IPM matrix is similar to that of the manual calibration. The method can also be generalized to build HD maps in a broader sense by increasing the types of recognizable markings

    Facial Expression Recognition Based on Dual-Channel Fusion with Edge Features

    No full text
    In the era of artificial intelligence, accomplishing emotion recognition in human–computer interaction is a key work. Expressions contain plentiful information about human emotion. We found that the canny edge detector can significantly help improve facial expression recognition performance. A canny edge detector based dual-channel network using the OI-network and EI-Net is proposed, which does not add an additional redundant network layer and training. We discussed the fusion parameters of α and β using ablation experiments. The method was verified in CK+, Fer2013, and RafDb datasets and achieved a good result
    corecore